

Automated Compression via AutoML

Model compression is an important technique facilitating efficient inference, while human expert needs to find a good set of hyper-parameters (e.g., compression ratio of each layer), which requires domain expertise and many trials and errors, and is usually time-consuming and sub-optimal. Goal: Automate the compression pipeline and free human labor. "Model compression by Al", which is automated, faster and enjoys higher performance.

Engineers

Novelty: 1	Learning	based	compression	>	R
------------	----------	-------	-------------	---	---

- 2. Resource-constrained search
- 3. Continuous action space for fine-grained surgery

AMC Results on CIFAR-10

Model	Policy	Ratio	Val Acc.	Test Acc.	Acc. after FT.
Plain-20 (90.5%)	deep (handcraft) shallow (handcraft) uniform (handcraft) $\mathbf{AMC} (R_{\mathbf{Err}})$	50% FLOPs	79.6 83.2 84.0 86.4	79.2 82.9 83.9 86.0	88.3 89.2 89.7 90.2
$\frac{\text{ResNet-56}}{(92.8\%)}$	uniform (handcraft) deep (handcraft) $\mathbf{AMC} (R_{\mathbf{Err}})$	50% FLOPs	87.5 88.4 90.2	87.4 88.4 90.1	89.8 91.5 91.9
$\frac{\text{ResNet-50}}{(93.53\%)}$	AMC (R_{Param})	60% Params	93.64	93.55	_

AMC: AutoML for Model Compression and Acceleration on Mobile Devices

Zhijian Liu¹ Hanrui Wang¹ Li-Jia Li³ Song Han¹ Ji Lin^{1*} Yihui He^{2*} 1 Massachusetts Institute of Technology 2 Xi'an Jiaotong University 3 Google (* equal contributions)

Rule based compression

4. Fast exploration with few GPUs (1GPU 4hours on ImageNet)

Reward Functions

	policy	FLOPs	${\it \Delta Acc}~\%$
VGG-16	FP (handcraft) [31]		-14.6
	$\overline{\text{RNP}}$ (handcraft) $[33]$		-3.58
	SPP (handcraft) [49]	20%	-2.3
	CP (handcraft) [22]		-1.7
	AMC (ours)		-1.4
MobileNet	uniform (0.75-224) [23]	56%	-2.5
	AMC (ours)	50%	-0.4
	uniform (0.75-192) [23]	41%	-3.7
	AMC (ours)	40%	-1.7
MobileNet-V2	uniform (0.75-224) [44]	50%	-2.0
	AMC (ours)	0070	-1.0

Overview of AutoML for Model Compression (AMC) Engine

Environment: Channel Pruning

For Resource-Constrained Compression, simply use R_{err} =-Error For Accuracy-Guaranteed Compression, considering both accuracy and resource (like FLOPs): $R_{FLOPs} = -Error \cdot log(FLOPs)$

AMC Results on ImageNe

100%

MobileNet

75%

MobileNet

NetAdapt [52]

 \mathbf{AMC}

DDPG Agent

- DDPG Agent for continuous action space (0-1)
- Input state embedding of each layer and output sparse ratio

Compression Methods Studied

- Fine-grained Pruning for model size compression
- Coarse-grained/Channel Pruning for faster inference

Search Protocols

- Resource-Constrained Compression to reach a desired compression ratio while getting highest possible performance.
- Accuracy-Guaranteed Compression to fully preserve the original accuracy while maintain smallest possible model size.

	_	
\square		

geine	C		A DECEMBER OF					
Million	top-1	top-5	GPU			Android		
MAC	acc.	acc.	latency	speed	latency	speed	memory	
569	70.6%	89.5%	$0.46\mathrm{ms}$	2191 fps	$123.3\mathrm{ms}$	$8.1 \ \mathrm{fps}$	20.1MB	
325	68.4%	88.2%	$0.34\mathrm{ms}$	$2944 \mathrm{~fps}$	$72.3\mathrm{ms}$	$13.8 \mathrm{~fps}$	14.8MB	
-	69.8%	-	-	-	$70.0\mathrm{ms}$	$14.3 { m ~fps}$	-	
285	70.5%	89.3%	$0.32\mathrm{ms}$	${f 3127~{ m fps}}\ ({f 1.43} imes)$	$68.3\mathrm{ms}$	$14.6 \text{ fps} (1.81 \times)$	14.3MB	
272	70.2%	89.2%	$0.30\mathrm{ms}$	${f 3350~{ m fps}}\ ({f 1.53} imes)$	$63.3\mathrm{ms}$	$16.0 \text{ fps} \\ (1.95 \times)$	13.2MB	